
Quantum Institute Workshop
Quantum Institute Briefing Center; December 9–10, 2002

Presenter: Jack Horner

12/05/2002 1

Using Automated Theorem-Provers
to Aid the Design of Efficient

Compilers for Quantum Computing

Jack K. Horner

Science Applications International Corporation
High Performance Computing Environments (CCN-8)

MS T080
Los Alamos National Laboratory

Los Alamos, NM 87545
(505) 665-2400
jkh@lanl.gov

12/05/2002 2

The doctrine of quantum logic: from
observables to propositions

physical observables

 linear operators on Hilbert space

 orthocomplemented, weakly modular lattice of subspaces

 system of “yes/no” experimental propositions (quantum logic)

Quantum Institute Workshop
Quantum Institute Briefing Center; December 9–10, 2002

Presenter: Jack Horner

12/05/2002 3

Problem statement

• Conventional programming languages (e.g., C++ or Fortran)
are based on Boolean logic (BL; e.g., first-order predicate
calculus)

• Quantum logic (QL) is profoundly non-Boolean (e.g., the
Boolean distributive law does not hold in QL)

• Quantum computers are at their foundation characterized by
QL

• In quantum computing, we seek to optimize the performance
of QL-oriented machine code that captures BL-based programs
(a compiler optimization problem)

• Because QL and BL are not isomorphic, optimizing the
operations of a BL-based program is not the same as
optimizing the representation of that program in QL

12/05/2002 4

Research approach

• Use automated quantum-logic theorem provers to help identify
BL-to-QL mapping-optimization opportunities (e.g., to aid the
search for shortest derivations of QL theorems)

• Current status: developed bvn, an automated theorem-prover
for Birkhoff-von Neumann quantum logic (BVNQL)
– portable, implemented in lex, yacc, and C
– backtracking-based
– automatically generates all BVNQL derivations of length less than l

(user-specified), in time less than t_max (user-specified), of a given
BVNQL proposition A from a given BVNQL proposition B

• Open issues
– QLs are not known to be complete
– most backtracking algorithms viciously sacrifice performance to

generality; none ultimately escape this trade

